Math 254-1 Exam 7 Solutions

1. Carefully define the linear algebra term "degenerate". Give two examples.

A linear combination is degenerate if each coefficient is zero. Many examples are possible, such as $0 x+0 y$ or $0(1,2)+0(-1,3)$.
2. Carefully define the linear algebra term "inner product". Give two examples on \mathbb{R}^{2}.

An inner product is a function that, given two vectors, yields one real number. It must satisfy three properties; each must hold for all vectors u, v, w and all scalars a, b : (I1) $\langle a u+b w, v\rangle=a\langle u, v\rangle+b\langle w, v\rangle$, (I2) $\langle u, v\rangle=\langle v, u\rangle$, and (I3) $\langle u, u\rangle \geq 0$, with equality precisely when $u=0$. Many examples on \mathbb{R}^{2} are possible, since $\langle u, v\rangle=u^{T} A v$ is an inner product for every positive definite matrix A. For $A=I$, this is the usual dot product. Other possible A include $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$. A 2×2 matrix is positive definite precisely when the determinant is positive AND the diagonal entries are positive.

The remaining three problems all concern the vector space $M_{2,2}(\mathbb{R})$ with standard inner product $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$.
3. Find all values of k such that $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $\left(\begin{array}{ll}3 & k \\ 0 & 1\end{array}\right)$ are orthogonal.

These vectors are orthogonal precisely when $\left\langle\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}3 & k \\ 0 & 1\end{array}\right)\right\rangle=0$. $\left\langle\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}3 & k \\ 0 & 1\end{array}\right)\right\rangle=$ $\operatorname{tr}\left(\left(\begin{array}{ll}3 & 0 \\ k & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\right)=\operatorname{tr}\left(\left(\begin{array}{cc}3 \\ k+2 & 2 k+1\end{array}\right)\right)=4+2 k$. This has exactly one solution, namely $k=-2$.
4. Find a basis for $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)^{\perp}$.

For convenience, set $S=\operatorname{Span}\left\{\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)^{\perp}\right\}$. Because $M_{2,2}(\mathbb{R})=\operatorname{Span}\left\{\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)\right\} \oplus$ S, we have $\operatorname{dim} M_{2,2}(\mathbb{R})=\operatorname{dim} \operatorname{Span}\left\{\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)\right\}+\operatorname{dim} S$, and hence $\operatorname{dim} S=3$. So we need three linearly independent vectors, each orthogonal to $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$. Among the standard vectors, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ both work. One more is, for example, $\left(\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right)$. The set $\left\{\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right)\right\}$ is linearly independent, since each vector has a coordinate that the other two do not, hence only the degenerate linear combination yields $\overline{0}$. Alternate proof of independence strategy: Represent these vectors using the standard basis (as columns), put them together into a 4×3 matrix, put this in row echelon form, and observe there are three pivots.
5. Use the Gram-Schmidt process to find an orthogonal basis for the space $\operatorname{Span}\left\{\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right),\left(\begin{array}{lll}3 & 0 \\ 0 & 1\end{array}\right)\right\}$.

Set $v_{1}=\left(\begin{array}{cc}1 & 2 \\ 2 & 1\end{array}\right), v_{2}=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$. We take $w_{1}=v_{1}$, then $w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}$. We calculate $\left\langle v_{2}, w_{1}\right\rangle=\left\langle v_{2}, v_{1}\right\rangle=4,\left\langle w_{1}, w_{1}\right\rangle=10$, so $u_{2}=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)-0.4\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)=$ $\left(\begin{array}{cc}2.6 & -0.8 \\ -0.8 & 0.6\end{array}\right)$.

